TR-2004013: Toeplitz and Hankel Meet Hensel and Newton: Nearly Optimal Algorithms and Their Practical Acceleration with Saturated Initialization

نویسندگان

  • Victor Y. Pan
  • Brian Murphy
  • Rhys E. Rosholt
  • Xinmao Wang
چکیده

The classical and intensively studied problem of solving a Toeplitz/ Hankel linear system of equations is omnipresent in computations in sciences, engineering and signal processing. By assuming a nonsingular integer input matrix and relying on Hensel’s lifting, we compute the solution faster than with the divide-and-conquer algorithm by Morf 1974/1980 and Bitmead and Anderson 1980 and nearly reach the information lower bound on the bit operation complexity of the solution. Furthermore, we extend lifting to the rings of integers modulo nonprimes, e.g., modulo 2. This allows significant saving of the word operations. We also extend our algorithms and complexity estimates to computations with singular ∗The results of this paper have been presented at the Annual International Conference on Application of Computer Algebra, Volos, Greece, June 2002; ACM International Symposium on Sympolic and Algebraic Computation, Lille, France, July 2002; and the 5th Annual Conference on Computer Algebra in Scientific Computing, Yalta, Crimea, Ukraine, September 2002. †Supported by NSF Grant CCR 9732206 and PSC CUNY Awards 65393–0034 and 66437– 0035

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toeplitz and Hankel Meet Hensel and Newton: Nearly Optimal Algorithms and Their Practical Acceleration with Saturated Initialization

The classical and intensively studied problem of solving a Toeplitz/ Hankel linear system of equations is omnipresent in computations in sciences, engineering and signal processing. By assuming a nonsingular integer input matrix and relying on Hensel’s lifting, we compute the solution faster than with the divide-and-conquer algorithm by Morf 1974/1980 and Bitmead and Anderson 1980 and nearly re...

متن کامل

TR-2011002: Symbolic Lifting for Structured Linear Systems of Equations: Numerical Initialization, Nearly Optimal Boolean Cost, Variations, and Extensions

Hensel’s symbolic lifting for a linear system of equations and numerical iterative refinement of its solution have striking similarity. Combining the power of lifting and refinement seems to be a natural resource for further advances, but turns out to be hard to exploit. In this paper, however, we employ iterative refinement to initialize lifting. In the case of Toeplitz, Hankel, and other popu...

متن کامل

Symbolic Lifting for Structured Linear Systems of Equations: Numerical Initialization, Nearly Optimal Boolean Cost, Variations, and Extensions

Hensel’s symbolic lifting for a linear system of equations and numerical iterative refinement of its solution have striking similarity. Combining the power of lifting and refinement seems to be a natural resource for further advances, but turns out to be hard to exploit. In this paper, however, we employ iterative refinement to initialize lifting. In the case of Toeplitz, Hankel, and other popu...

متن کامل

TR-2005008: Toeplitz and Hankel Meet Hensel and Newton Modulo a Power of Two

We extend Hensel lifting for solving general and structured linear systems of equations to the rings of integers modulo nonprimes, e.g. modulo a power of two. This enables significant saving of word operations. We elaborate upon this approach in the case of Toeplitz linear systems. In this case, we initialize lifting with the MBA superfast algorithm, estimate that the overall bit operation (Boo...

متن کامل

TR-2002002: Can We Optimize Toeplitz/Hankel Computations? II. Singular Toeplitz/Hankel-like Case

In Part I, under the bit operation cost model we achieved nearly optimal randomized solution of nonsingular Toeplitz/Hankel linear system of equations based on Hensel's lifting. In Part II, we extend these results to the singular Toeplitz/Hankel-like case based on the MBA divide-and conquer algorithm and its combination with Hensel's lifting. We specify randomization and estimate the error/fail...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016